
Blendnik: A Real-Time Performance System Using
Blender and Pure Data

Nicholas J. Porcaro
Independent Musician/Software Engineer

46 Belvedere Street
San Francisco, CA 94117

(01) 415-553-8769

nick@porcaro.org

Ellen Levy
Independent Artist

151 1st Av #56
New York, New York 10003

(01) 212-982-6399

elleniya@hotmail.com

ABSTRACT
The authors, a graphic designer/painter, and a musician/software

have developed a performance system for re-interpreting their live

free improvisational jam sessions. The open source systems Pure

Data, Open Sound Control, Blender, and Python were used to

provide bidirectional mapping of aural and visual parameters and

real-time interaction via MIDI.

Keywords
Painting, improvisation, Python, Blender, Pure Data.

1.INTRODUCTION
Over the last several years, we have collaborated on a series of

short pieces, usually lasting a few minutes, comprising of freely

improvised piano along with live painting, usually

pastel/acrylic/ink on vellum.

At some point we wanted to take our collaboration to the next

level, so we researched ways to digitize the music and images for

purposes of live interaction. We first experimented with various

common commercial applications, but found they were unsuitable

for our sensibilities and budget. Then we discovered Blender [5]

and Pure Data (Pd) [17].

We experimented with mapping scans of the paintings onto 3D

objects, and used the built-in Blender Game Engine (BGE) [21],

[22] for real-time rendering. A Python [18] script running in the

BGE was written using Open Sound Control (OSC) [16] to

provide two-way communication with a Pd patch.

A looping sampler implemented in the Pd patch can be

configured by creating properties in a Blender scene which

specify audio samples and the mappings between aural and visual

parameters.

For instance, X location could map to left-right balance, Z

location to pitch, Y location to reverb decay, X rotation to flange,

Y rotation to tempo, Z rotation to dry/wet mix and transparency to

volume. Shape morphing and camera control are also supported.

These mappings can be changed in real-time from a computer

anywhere on the Internet. The computer could also be connected

to a MIDI controller or sensor. Live music could be performed

along with the loops, perhaps using a physically modeled guitar

we are developing.

We plan to use this system to explore relationships between visual

art and music in the context of live performances and gallery

installations.

2.BLENDER AS A FRONT-END DESIGN

ENVIRONMENT
Blender is an excellent open source 3D animation/modeling

system. It can be used to create complex textured objects (or

meshes) which can be animated in real-time in the integrated

BGE. Our process starts by designing a mesh inspired by a

painting, or series of paintings. This can be done in a variety of

ways. A very basic technique would be to create a cube and then

edit it by moving around vertices, extruding faces and so forth

[13]. More advanced techniques such as multiresolution sculpting

can also be employed [15].

Complex Hollywood-style animations have been done in Blender

[7], [4] but for real-time applications there is a limit of about

10,000 faces per scene. This number can be reduced more

depending factors such as the number of lights and two-sided

alpha-enabled faces used. The graphics processor is also a major

factor. Our MacBook Pro with a recent graphics processor far

out-performs our old PowerBook G4.

Despite these limitations, there has been impressive work done in

real-time using soft bodies [9] and GLSL filters [1].

Once the mesh has been designed, a texture can be applied from

an image file. Procedural textures are also supported.

To apply the texture in a predictable way, UV mapping [20] is

used. UV maps can be exported to an image file, which can then

be used as a background layer in an image manipulation program.

Imagery can then be drawn over this background layer, which will

appear on the mesh when the image file is reloaded into Blender.

The background layer can be discarded if desired.

Figure 1 shows a mesh for a section of an abstract tunnel scene we

are developing, Figure 2 shows the UV map, Figure 3 shows

imagery drawn over the map, and Figure 4 shows a screen shot

from the BGE.

Figure 1. Abstract tunnel mesh.

Figure 2. UV map for abstract tunnel.

Figure 3. Imagery drawn over map.

Figure 4. Screen shot of abstract tunnel in the BGE.

The next stop is animation. Each object in a Blender scene can

have curves that specify how it moves, what happens to its

material properties and so forth. These curves are called IPO

(interpolation) curves [3], [11].

Each "curve" has a collection of "channels". We currently support

use of the LocX, LocY, LocZ, RotX, RotY, RotZ, and ColA

channels.

3.BLENDER GAME ENGINE AND

PYTHON
After the animation is working, we define how the image will be

used in a scene. Currently it can either be associated with a sound

in Pd (which we call "blendnik enabled"), or it can just run as a

regular BGE object and still use all the usual BGE Logic Bricks

and properties [14].

If the object is going to be blendnik enabled, then certain BGE

properties, which we call “mapping properties”, can be defined to

specify the nature of the behavior.

Currently you can specify a sound file to play in a looping

sampler, and LocX, LocY, LocZ, RotX, RotY, RotZ, ColA can be

mapped to audio parameters for pitch, tempo, scratching, volume,

balance, dry/wet mix, reverb level, reverb decay, flange level and

3 flange parameters.

Blender supports embedded Python scripting [8], which can be

used to greatly increase the functionality of Blender and the BGE

[2]. A Python script (blendnik.py) was written to manage the

connection with Pd. A corresponding Pd patch, blendnik.pd was

also created. Blendnik.pd and blendnik.py use OSC [12], [10] for

interprocess communication.

Every blendnik-enabled object in the scene must specify a Python

Controller Logic Brick, calling the function blendnik.process(),

which is defined in blendnik.py.

When the BGE is running, blendnik.process() is called on every

frame and provides Pd with the most recent ordinate values of the

LocX, LocY, LocZ, RotX, RotY, RotZ, ColA IPO channels.

Depending on how the BGE mapping properties are defined, each

of these values affects the corresponding sound parameter.

Values come out of blendnik.py normalized and then a scale and

offset is applied in blendnik.pd.

For example, say the animation is running at frame N and say a

string BGE mapping property named LocX with value balance is

defined for an object named s1 in the scene.

The normalized value of the LocX IPO channel at frame N is sent

via blendnik.process() to the balance parameter in the sampler

instance for s1 in blendnik.pd. In this particular example, the

minimum value of LocX would correspond to a fully right-panned

balance and the maximum value of LocY would correspond to a

fully left-panned balance.

Reasonable default scale and offset values are defined in

blendnik.pd, which can be overridden by BGE properties if

desired.

4.CONNECTION TO PD
When the BGE is launched, blendnik.py launches blendnik.pd,

sending pertinent data from the current Blender scene, such as

instance names, sound files and other initial values specified on

BGE properties.

After this happens the blendnik.py and the blendnik.pd are ready

to communicate via OSC, and proceed as follows:

4.1PD TO BLENDER
When a slider is moved in Pd, or when a note or controller comes

in from a MIDI device, Pd sends an OSC message to blendnik.py,

which can make objects move or modify their appearance. Sliders

can be ganged together to send multiple messages at the same

time, and additional logic can be developed for more complex

interactions. For example, you could have a slider that sends

rotations which are opposites of each other and simultaneously

sends a transparency value run through a lookup table. We call

this idea "meta controllers".

4.2BLENDER TO PD
On every animation frame, blendnik.py sends the values of the

RotX, RotY, RotZ, LocX, LocY, LocZ and ColA channels to

blendnik.pd, which can modify the sound currently playing.

5.THE PD PATCH, BLENDNIK.PD
Blendnik.pd consists of the following subpatches:

s1 ... s12:

Subpatches for each blendnik-enabled Blender object. These

subpatches contain a modified version of the looping sampler

example B14.sampler.rockafella.pd that comes with Pd, with extra

features for pitch bend, reverb and flanging. Up to 30 instances

can exist under the current scheme, corresponding to 30 separate

audio output channels.

control:

Sends messages to selected BGE objects via the s subpatches, via

"master control" subpatches, which correspond to the various

types of motion and sound parameters.

sound:

Provides for loading different sounds during a performance,

turning on and off audio processing, and sound output.

init:

Initialization, deals with the default values and other initial

condition handling.

comm:

Communication with Blender via OSC

axiom49:

Simulation of a MIDI keyboard controller. Presents a scheme for

choreographing a performance.

midi:

MIDI input support and simulation used by axiom49.

6.EXAMPLE SCENE
Figure 5 shows a screen shot of the system running a Blender

scene which uses one of our collages. Figure 6 shows part of the

axiom49 subpatch and Figure 7 shows part of the blendnik.pd

patch.

Figure 5. Screen shot of system running a scene.

Figure 6. Part of blendnik.pd patch

Figure 7. Part of axiom49.pd subpatch

7.FUTURE WORK
• Create a performable multi-sound channel MIDI-controlled

installation and performance scenario.

• Allow for creation of new objects on the fly and dynamic

allocation/deallocation of looping sampler instances,

• Make use of BGE physics.

• Better camera control to support 3D input devices.

• Optimize sampler, perhaps a new external written in C++

based on the STK [19]

• Integration of one-shot sampler and a physically modeled

electric guitar.

• Fix bugs in Blender related to alpha sorting

• Make Blendnik generally available when it becomes more

stable. See [6] for the latest progress

8.ACKNOWLEDGMENTS
Thanks to Ton Roosendaal and Blender foundation for developing

Blender and Miller Puckette for developing Pure Data. Also

thanks to the UC Berkeley Center for New Music and Audio

Technology (CNMAT) for developing OSC. A special thanks

goes to Julius Smith, my mentor from The Center for Computer

Research in Music and Acoustics (CCRMA) at Stanford

University, who has egged on my experimentation over the years,

Finally a big thanks goes to my late father Carmine Porcaro for
his overall support and inspiration.

9.REFERENCES
[1] Advanced GLSL filter demo:

http://blenderartists.org/forum/showthread.php?t=152343

[2] BGE Python API:

http://www.blender.org/documentation/248PythonDoc/GE/cl
ass-tree.html

[3] Basic animation:

http://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Bas
ic_Animation

[4] Big Bucks Bunny: http://www.bigbuckbunny.org

[5] Blender: http://www.blender.org

[6] Blendnik: http://www.porcaro.org/blendnik.html

[7] Elephant's Dream: http://www.elephantsdream.org

[8] Embedded Python:
http://www.python.org/doc/2.5.2/ext/embedding.html

[9] GLSL bathroom demo:
http://blenderartists.org/forum/showthread.php?t=137038

[10] Holth, D., McChesney, C. Open Sound Control for Python,

http://www.ixi-
software.net/content/body_backyard_osc.html

[11] IPO curves and key frames:

http://wiki.blender.org/index.php/Doc:Manual/Animation/Ba
sic/Tools/Ipo_Curves_and_Keyframes

[12] IXI Audio: http://www.ixi-software.net

[13] Learn to Model:

http://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Lea
rn_to_Model

[14] Logic Bricks:

http://wiki.blender.org/index.php/Doc:Manual/Game_Engine
/Logic_Bricks

[15] Multiresolution Modeling:

http://wiki.blender.org/index.php/Doc:Manual/Modelling/Me
shes/Multiresolution_Mesh

[16] Open Sound Control: http://opensoundcontrol.org

[17] Pure Data: http://puredata.info

[18] Python http://www.python.org

[19] Synthesis Tool Kit: http://ccrma.stanford.edu/software/stk

[20] UV Mapping
http://wiki.blender.org/index.php/Doc:Manual/Textures/UV

[21] Wartmann, C., and Kauppi, M., The Blender Game Kit, 2nd

Edition, Blender Foundation, Amsterdam, the Netherlands,
2008.

[22] YoFrankie! - Apricot Open Game Project
http://www.yofrankie.org

